
The decay law can have an irregular character

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 1333

(http://iopscience.iop.org/1751-8121/40/6/010)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/6
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 1333–1340 doi:10.1088/1751-8113/40/6/010

The decay law can have an irregular character

Pavel Exner1,2 and Martin Fraas1

1 Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague, Czech Republic
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Abstract
Within a well-known decay model describing a particle confined initially within
a spherical δ potential shell, we consider the situation when the initial state
has an unusual energy distribution decaying slowly as k → ∞; the simplest
example corresponds to a wavefunction constant within the shell. We show
that the non-decay probability as a function of time then behaves in a highly
irregular, most likely fractal way.

PACS number: 03.65.Xp

The decay of an unstable quantum system is one of the effects frequently discussed and various
aspects of such processes were considered. To name just a few, recall the long-time deviation
from the exponential decay law [1, 2], the short-time behaviour related to the Zeno and anti-
Zeno effects [3–6], revival effects such as the classical one in the kaon–antikaon system, etc.
In all the existing literature3, however, the decay law is treated as a smooth function, either
explicitly or implicitly, e.g., by dealing with its derivatives. The aim of this paper is to show
there are situations when it is not the case.

A hint why it could be so comes from the behaviour of Schrödinger wavefunctions during
the time evolution. While in most cases the evolution causes smoothing [8], it may not be true
for a particle confined in a potential well and the initial state does not belong to the domain
of the Hamiltonian. A simple and striking example was found by Berry [9] for a rectangular
hard-wall box and independently by Thaller [10] for a one-dimensional infinite potential well.
It appears that if the initial wavefunction is constant, it evolves into a steplike-shaped ψ(x, t)

for times which are rational multiples of the period, t = qT with q = N/M , and the number
of steps increases with growing M, while for an irrational q the function ψ(x, t) is fractal with
respect to (w.r.t.) the variable x.

One can naturally ask what will happen if the hard wall is replaced by a semitransparent
barrier through which the particle can tunnel into the outside space. In a broad sense, this is
one of the most classical decay model which can be traced back to [11]. We will deal with
its particular case when the barrier is given by a spherical δ potential which is sometimes

3 The bibliography concerning unstable systems is vast; most part can be derived from sources such as [2, 5, 7].
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called Winter model being introduced for the first time, to our knowledge, in [12]. A thorough
analysis of the model can be found in [13]; it has also various generalizations, we refer to [14]
for a bibliography. The described behaviour of the wavefunction in the absence of tunnelling
suggests that in the decaying system the irregular4 time dependence could also be visible, both
in the wavefunction and in various quantities derived from it, at least in the weak coupling
case5. The aim of the present paper is to demonstrate that this conjecture is indeed valid.

To be concrete, we will study a spinless nonrelativistic quantum particle described by the
Hamiltonian

Hα = −� + αδ(|�r| − R), α > 0, (1)

with a fixed R > 0; we use rational units, h̄ = 2m = 1. For simplicity, we restrict our attention
to the s-wave part of the problem, writing thus the wavefunctions as ψ(�r, t) = 1√

4π
r−1φ(r, t)

with the associated Hamiltonian

hα = − d2

dr2
+ αδ(r − R) (2)

in the lowest partial wave. We are interested in the time evolution determined by the
Hamiltonian (1), ψ(�r, t) = e−iHαtψ(�r, 0) for a fixed initial condition ψ(�r, 0) with the support
inside the ball of radius R; the advantage of the used model is that the propagator can be
computed explicitly. The time evolution is naturally defined for all vectors in the Hilbert
space, not only for those of the domain of the Hamiltonian, and it is in fact states outside the
domain we will be primarily concerned with. Of a particular interest is the decay law,

P(t) =
∫ R

0
|φ(r, t)|2 dr, (3)

i.e. the probability that the system localized initially within the shell will be still found there
at the measurement performed at an instant t. We are going to derive an exact formula for the
decay law which will then allow us to evaluate the function (3) numerically for a given initial
state.

It is straightforward to check [13] that the Hamiltonian (1) has no bound states. On the
other hand, it has infinitely many resonances with the widths increasing logarithmically w.r.t.
the resonance index. A natural and well-known idea [17, 18] is to employ them as a tool to
expand the quantities of interest.

First of all, we have to find Green’s function g(k, r, r ′), i.e. the integral kernel of (hα−k2)−1

which determines the time evolution in the standard way [19],

e−ihαt = 1

π
lim
ε↓0

∫ ∞

0
e−iλt Im

1

hα − λ − iε
dλ, (4)

recall that σ(hα) = [0,∞) for α > 0; we are going to perform a resonance expansion of the
integral (4). The Green function for a system with singular potential is obtained from Krein’s
formula

1

hα − k2
= 1

h0 − k2
+ λ(k)(	k, ·)	k(r),

where 	k(r) := G0(r, R) is the free Green function with one argument fixed; in particular,
	k(r) = 1

k
sin(kr) eikR holds for r < R, and λ(k) is determined by δ-interaction matching

conditions at the singular point R; by a direct calculation [13] one finds

λ(k) = − α

1 + iα
2k

(1 − e2ikR)
. (5)

4 We use this term in the sense common in mathematics, namely as characterization of a depart from smoothness.
5 This conjecture is also supported by the study of revivals in an infinite square well with a δ-barrier, see [15]; another
example of highly complex evolution is a similar situation that can be found in [16].
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By (4) we then get φ(r, t) = ∫ ∞
0 u(t, r, r ′)φ(r ′, 0) dr ′ with the kernel expressed through

Fourier transformation of Im g(k + iε, r, r ′); since hα has no eigenvalues we may pass to the
limit ε → 0 obtaining

u(t, r, r ′) =
∫ ∞

0
p(k, r, r ′) exp(−ik2t) 2k dk, (6)

where p(k, r, r ′) = 1
π

Im g(k, r, r ′). Using equation (5) this can be written explicitly as

p(k, r, r ′) = 2k sin(kr) sin(kr ′)
π(2k2 + 2α2 sin2 kR + 2kα sin 2kR)

. (7)

The resonances of the problem are identified with the poles of g(·, r, r ′) continued analytically
to the lower momentum half plane. They exist in pairs, those in the fourth quadrant, denoted
as kn in the increasing order of their real parts and −k̄n. The set of singularities of the
kernel (7) then also includes the mirrored points, being

S = {kn,−kn, k̄n,−k̄n : n ∈ N}. (8)

In the vicinity of the singular point kn the function p(·, r, r ′) can be written as

p(k, r, r ′) = i

2π

vn(r)vn(r
′)

k2 − k2
n

+ χ(k, r, r ′), (9)

where vn(r) solves the differential equation hαvn(r) = k2
nvn(r) and the function χ is locally

analytic.
The factor i

2π
is chosen to get the conventional normalization of the resonant state vn(r)

[17]. For fixed r, r ′ < R and α > 0, the function p(·, r, r ′) decays exponentially in the sector
�α = {k ∈ C : π −α > | arg k| > α}. Moreover, putting ln(ϕ) = 1

2R
(2nπ + π/2)(1 + i tan ϕ)

we find that p(ln(ϕ), r, r ′) is bounded independently of ϕ and n. Thus considering the
integration curves n(ϕ) = {ln(ϕ) if ϕ /∈ �ϕn

and |ln(ϕn)| eiϕ if ϕ ∈ �ϕn
} with properly chosen

ϕn → 0, one can express p(k, r, r ′) as the sum over the pole singularities

p(k, r, r ′) =
∑
k̃∈S

1

k − k̃
Resk̃p(k, r, r ′) (10)

and derive the following useful formula from the residue theorem:∑
k̃∈S

Resk̃p(k, r, r ′) = 0. (11)

The last two equations can be rewritten in view of equation (9) and the symmetry of the set S
in the form

p(k, r, r ′) =
∑
n∈Z

i

2π

1

k2 − k2
n

k

kn

vn(r)vn(r
′), (12)

∑
n∈Z

1

kn

vn(r)vn(r
′) = 0, (13)

where we denote k−n := −k̄n and v−n is the associated solution of the equation Hαv−n(r) =
k2
−nv−n(r).

Next, we substitute equation (12) into (6) and using the identity (13) we arrive at the
formula

u(t, r, r ′) = i

2π

∫ ∞

0

∑
n∈Z

exp(−ik2t)

k2 − k2
n

2k2

kn

vn(r)vn(r
′) dk

=
∑
n∈Z

M(kn, t)vn(r)vn(r
′) (14)



1336 P Exner and M Fraas

with M(kn, t) = 1
2 eu2

n erfc(un) and un := −e−iπ/4kn

√
t . Indeed, using 2k2 = 2

(
k2 −k2

n

)
+ 2k2

n

we write u(t, r, r ′) as a sum of two terms, the first of which vanishes in view of (13). The second
one decomposes again into a sum of two integrals containing kn ± k in their denominators,
which gives the right-hand side of (14) with

M(kn, t) = i

2π

∫ ∞

−∞

e−ik2t

k − kn

dk, (15)

in other words, the above expression.
Now a straightforward calculation using (3) and (14) allows us to express the decay law

in the form

P(t) =
∑
n,l

CnC̄lInlM(kn, t)M(kl, t), (16)

with the coefficients

Cn :=
∫ R

0
φ(r, 0)vn(r) dr, Inl :=

∫ R

0
vn(r)v̄l(r) dr. (17)

This expression is valid for more general potentials, e.g., finite-range ones [18]; in our particular
case of the Hamiltonian (2) we can specify vn(r) = √

2Qn sin(knr) with the coefficient Qn as
follows:

Qn =
( −2ik2

n

2kn + α2R sin 2knR + α sin 2knR + 2knαR cos 2knR

)1/2

Now we are ready to compute the decay law for a given initial state. Without loss of
generality we may put R = 1, we choose the value α = 500 for numerical evaluation6 and
replace the infinite series by a cut-off one with |n| � 1000; this guarantees numerical stability
of the result. As the first example we consider initial wavefunction constant within the well,
i.e.,

φ(r, 0) = R−3/2
√

3r, r < R. (18)

The corresponding decay law is plotted in figure 1. It is irregular having numerous steps7, the
most pronounced at the period T = 2R2/π of motion in the inner part of the corresponding
decoupled system (in other words, the infinite potential well) and its simple rational multiples.
To make them more visible, we plot the logarithmic derivative of the function P(t) in the inset;
it is locally smeared, otherwise the picture would be a fuzzy band. The irregular structure is
expected to be fractal; it persists at higher time but its amplitude decreases relatively w.r.t. the
smooth background.

In the next example, we choose the initial state having constant reduced wavefunction,
φ(r, 0) = R−1/2 for r < R, so ψ(r, 0) has a (square integrable) singularity at the origin;
the advantage is that the reduced problem offers a straightforward comparison to the one-
dimensional example treated in [10] including the shapes of the wavefunctions. The decay
law for this case is plotted in figure 2; it again exhibits derivative jumps around simple rational
multiples of the period. The corresponding function |φ(r, t)|2 for three such values is plotted
in figure 3. To compare with [10] one has to take the symmetry into account to conclude that
the revival period of the infinite-well states is T/8. In the absence of decay the function for
t = T/8 is just constant, the other two are simple step functions. We see that the tunnelling

6 The effect is expected to be present for any α > 0; however, for a numerical demonstration we seek here it is
reasonable to choose a large value at which the particle leaks out only slowly.
7 Another striking deviation from the exponential decay law is that the decay rate explodes as t → 0, which is due
to the fact that the energy distribution of the state ψ decays too slowly at high energies, cf [6].
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Figure 1. Decay law for the initial state φ(r, 0) = R−3/2
√

3r . In the inset we plot the logarithmic
derivative averaged over intervals of the length approximately T/200.
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Figure 2. Decay law for initial state φ(r, 0) = R−1/2 and its logarithmic derivative, locally
smeared, in the inset.

through δ-barrier modifies the shape of the function mostly in the vicinity of the origin, the
barrier and the jump points.
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Figure 3. The probability density inside the sphere with R = 1 multiplied by r2 at the instants
t = T/8, T /16 and T/27.

To support the conjecture about the fractal character of P(t) let us look how its derivative
behaves in the limit α → ∞ when φ(r, t) expands asymptotically as

φ(r, t) ≈
∑

n

Cn exp
(−ik2

nt
)
vn(r). (19)

It is easy to see that for a fixed n and α → ∞ the resonance position expands around
kn,0 := nπ/R as

kn ≈ kn,0 − kn,0

αR
+

kn,0

(αR)2
− i

k2
n,0

α2R
+ · · · (20)

which shows that in the leading order we have vn(r) ≈
√

2
R

sin(knr) and, furthermore, that

the substantial contribution to the sum in (19) comes from terms with n �
[
α1−ε R

π

]
for some

0 < ε < 1/3.
The derivative Ṗ (t) can be computed from the probability current conservation  ′(r) =

− d
dt

|φ(r, t)|2; integrating it over the interval (0, R) and using  (0) = 0 we get

Ṗ (t) = −2 Im(φ′(R, t)φ̄(R, t)). (21)

We plug the above expansion into (19) obtaining

φ(R, t) ≈
√

2

R

∞∑
n=1

(−1)nCn exp

[
−ik2

n,0t

(
1 − 2

αR

)]
exp

(
−2k3

n,0

α2R
t

)(
−kn,0

α
− i

k2
n,0

α2

)

(22)

and a similar expansion for φ′(R, t) with the last bracket replaced by kn,0. We observe that
for j > −1 we have
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∞∑
n=1

exp

(
−2

k3
n,0

α2R
t

)
k

j

n,0 ≈ R

π

(
R

2t

)(j+1)/3

α2(j+1)/3Ij ,

where we have denoted Ij := ∫ ∞
0 e−x3

xj dx = 1
3

(
j+1

3

)
.

Let us now we assume that the coefficients in (19) satisfy Cn ∼ k
−p

n,0 as n → ∞. First
suppose that the decay is fast enough, p > 1; note that this is certainly true in the finite-energy
case with p > 3/2. The term −kn,0/α in (22) obviously does not contribute to the imaginary
part, hence we find that |Ṗ (t)| � const α4/3−4/3p → 0 holds as α → ∞ uniformly in the time
variable.

The situation is different if the decay is slow8, p � 1. As an illustration take
Cn = (−1)n+1

√
6

Rkn
, which corresponds to the first one of the above numerical examples.

Since the real part of the resonances changes with α, cf (20), it is natural to study the limit of
Ṗ (tα) as α → ∞ at the moving time value tα := t (1 + 2/αR). Up to higher order terms the
appropriate value φ(R, tα) is obtained by removing the bracket (1 − 2/αR) on the right-hand
side of (22) and φ′(R, tα) is obtained similarly.

First consider irrational multiples of T. We use the observation made in [21] that the
modulus of

∑L
n=1 eiπn2t is for an irrational t bound by CL1−ε where C, ε depend on t only. In

combination with a Cauchy-like estimate,
∑∞

n=1 anbn �
∑∞

n=1

∣∣∑n
j=1 aj

∣∣|bn − bn+1|, which
yields

∞∑
n=1

exp
(−ik2

n,0t
)

exp

(
−2k2

n,0

α2R
t

)
k

j

n,0 � const α2/3(j+1−ε)

and, consequently, Ṗ (tα) → 0 as α → ∞ similarly as in the case of fast decaying coefficients.
Let us next assume rational times, t = p

q
T . If pq is odd then SL(t) := ∑L

n=1 eiπn2t

repeatedly retraces by [21] the same pattern, hence Ṗ (tα) → 0, cf figure 1 at the half
period. On the other hand, for pq even |SL(t)| grows linearly with L and, consequently,
limα→∞ Ṗ (tα) > 0. As an example let us compute this limit for the period T, i.e. p = q = 1.
Using (21) we find

lim
α→∞ Ṗ (Tα) = − 24

R2
lim

α→∞ Im

( ∞∑
n=1

exp

(
−2k3

n,0

α2R
T

)

×
∞∑

n=1

exp

(
−2k3

n,0

α2R
T

) (
− 1

α
+ i

kn,0

α2

))

= − 24

R2

(
R

π

)2 1

2T/R
I1I0 = − 4

3
√

3
≈ −0.77;

this is approximately the value obtained by numerical calculations9.
Summarizing this paper, we have reexamined time decay in the Winter model and found

indications that the decay law is a highly irregular function if the energy distribution decays
slowly as k → ∞.

8 Resonance regime change due to momentum–space delocalization was also observed in a different context, see
[20].
9 This is not obvious from the inset of figure 1. The difference is due to the smearing. The true width of the peak is
about T/α with α = 500; a comparison to the chosen scale of local averaging explains the factor of order 2 by which
the value differs from the height of the peak there.
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